On the divergence of Birkhoff Normal Forms

نویسندگان

چکیده

Abstract It is well known that a real analytic symplectic diffeomorphism of the $2d$ 2 d -dimensional disk ( $d\geq 1$ ≥ 1 ) admitting origin as non-resonant elliptic fixed point can be formally conjugated to its Birkhoff Normal Form, formal power series defining integrable at origin. We prove in this paper Form general divergent. This solves, any dimension, question determining which two alternatives Pérez-Marco’s theorem (Ann. Math. (2) 157:557–574, 2003) true and answers by H. Eliasson. Our result consequence fact when $d=1$ = convergence object BNF has strong dynamical consequences on Lebesgue measure set invariant circles arbitrarily small neighborhoods proof, our results, extend case diffeomorphisms annulus Diophantine torus.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

0 Convergence or generic divergence of Birkhoff normal form

We prove that Birkhoff normal form of hamiltonian flows at a non-resonant singular point with given quadratic part are always convergent or generically divergent. The same result is proved for the normalization mapping and any formal first integral.

متن کامل

Existence of Divergent Birkhoff Normal Forms of Hamiltonian Functions

where κ = 0, . . . , n, and λj is pure imaginary precisely when 1 ≤ j ≤ κ, and λ1, −λ1, . . . , λn, −λn are eigenvalues of Hzz(0)J with z = (x, y) and Jxj = yj = −J yj. One says that λ1, . . . , λn are non-resonant, if λ ·α ≡ λ1α1 + · · ·+λnαn 6= 0 for all multi-indices of integers α 6= 0. The Birkhoff normal form says that under the non-resonance condition on λ, there is a formal symplectic tr...

متن کامل

Birkhoff Normal Forms and KAM Theory for Gumowski-Mira Equation

By using the KAM theory we investigate the stability of equilibrium solutions of the Gumowski-Mira equation: xn+1=(2ax n)/(1+x n2)-xn-1, n=0,1,…, where x-1, x0∈(-∞,∞), and we obtain the Birkhoff normal forms for this equation for different equilibrium solutions.

متن کامل

Birkhoff Normal Forms in Semi-classical Inverse Problems

The purpose of this note is to apply the recent results on semi-classical trace formulæ [17], and on quantum Birkhoff normal forms for semi-classical Fourier Operators [12] to inverse problems. We show how the classical Birkhoff normal form can be recovered from semi-classical spectral invariants. In fact the full quantum Birkhoff normal form of the quantum Hamiltonian near a closed orbit, and ...

متن کامل

survey on the rule of the due & hindering relying on the sheikh ansaris ideas

قاعده مقتضی و مانع در متون فقهی کم و بیش مستند احکام قرار گرفته و مورد مناقشه فقهاء و اصولیین می باشد و مشهور معتقند مقتضی و مانع، قاعده نیست بلکه یکی از مسائل ذیل استصحاب است لذا نگارنده بر آن شد تا پیرامون این قاعده پژوهش جامعی انجام دهد. به عقیده ما مقتضی دارای حیثیت مستقلی است و هر گاه می گوییم مقتضی احراز شد یعنی با ماهیت مستقل خودش محرز گشته و قطعا اقتضاء خود را خواهد داشت مانند نکاح که ...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Publications Mathématiques de l'IHÉS

سال: 2022

ISSN: ['0073-8301', '1618-1913']

DOI: https://doi.org/10.1007/s10240-022-00130-2